Some Experiments with Integral Apollonian Circle Packings
نویسندگان
چکیده
Bounded Apollonian circle packings (ACP’s) are constructed by repeatedly inscribing circles into the triangular interstices of a configuration of four mutually tangent circles, one of which is internally tangent to the other three. If the original four circles have integer curvature, all of the circles in the packing will have integer curvature as well. In [S1], Sarnak proves that there are infinitely many circles of prime curvature and infinitely many pairs of tangent circles of prime curvature in a primitive1 integral ACP. In this paper, we give a heuristic backed up by numerical data for the number of circles of prime curvature less than x, and the number of “kissing primes,” or pairs of circles of prime curvature less than x in a primitive integral ACP. We also provide experimental evidence towards a local to global principle for the curvatures in a primitive integral ACPs.
منابع مشابه
Apollonian Circle Packings: Number Theory II. Spherical and Hyperbolic Packings
Apollonian circle packings arise by repeatedly filling the interstices between mutually tangent circles with further tangent circles. In Euclidean space it is possible for every circle in such a packing to have integer radius of curvature, and we call such a packing an integral Apollonian circle packing. There are infinitely many different integral packings; these were studied in the paper [8]....
متن کاملOn the Local-global Principle for Integral Apollonian 3-circle Packings
In this paper we study the integral properties of Apollonian-3 circle packings, which are variants of the standard Apollonian circle packings. Specifically, we study the reduction theory, formulate a local-global conjecture, and prove a density one version of this conjecture. Along the way, we prove a uniform spectral gap for the congruence towers of the symmetry group.
متن کاملThe sensual Apollonian circle packing
The curvatures of the circles in integral Apollonian circle packings, named for Apollonius of Perga (262-190 BC), form an infinite collection of integers whose Diophantine properties have recently seen a surge in interest. Here, we give a new description of Apollonian circle packings built upon the study of the collection of bases of Z[i], inspired by, and intimately related to, the ‘sensual qu...
متن کاملApollonian Circle Packings
Figure 1: An Apollonian Circle Packing Apollonius’s Theorem states that given three mutually tangent circles, there are exactly two circles which are tangent to all three. Apollonian circle packings are produced by repeating the construction of mutually tangent circles to fill all remaining spaces. A remarkable consequence of Descartes’ Theorem is if the initial four tangent circles have integr...
متن کاملIntegral Apollonian Packings
We review the construction of integral Apollonian circle packings. There are a number of Diophantine problems that arise in the context of such packings. We discuss some of them and describe some recent advances. 1. AN INTEGRAL PACKING. The quarter, nickel, and dime in Figure 1 are placed so that they are mutually tangent. This configuration is unique up to rigid motions. As far as I can tell t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental Mathematics
دوره 20 شماره
صفحات -
تاریخ انتشار 2011